62 research outputs found

    Aiding the Visually Impaired: Developing an efficient Braille Printer

    Full text link
    With the large number of partially or completely visually impaired persons in society, their integration as productive, educated and capable members of society is hampered heavily by a pervasively high level of braille illiteracy. This problem is further compounded by the fact that braille printers are prohibitively expensive - generally starting from two thousand US dollars, beyond the reach of the common man. Over the period of a year, the authors have tried to develop a Braille printer which attempts to overcome the problems inherent in commercial printers. The purpose of this paper, therefore, is to introduce two prototypes - the first with an emphasis of cost-effectiveness, and the second prototype, which is more experimental and aims to eliminate several demerits of Braille printing. The first prototype has been constructed at a cost significantly less than the existing commercial braille printers. Both the prototypes of the device have been constructed, which will be shown.Comment: 6 pages. IEEE accepted paper (not published yet) International Conference on Advances in Computing, Communications and Informatics (ICACCI-2017

    Hematite Spherules on Mars

    Get PDF
    In 2004, the observation of large amounts of hematite spherules on Mars by the NASA’s Mars Exploration Rover “Opportunity,” which landed in Eagle crater on Meridiani Planum, created tremendous excitement among the scientific community. The discovery of hematite was significant as it suggests past presence of water on Mars. Furthermore, the hematite spherules were widely suggested to be concretions that formed by precipitation of aqueous fluids. Among the various observed mysteries of Martian hematite spherules, also known as “blueberries,” one regarding to their size limit was very puzzling. All of the millions of blueberries observed on Mars were smaller than 6.2 mm in diameter. Because the concretions on Earth are not limited in size, the formation of the Martian blueberries became difficult to explain. In this chapter, we will discuss the observed properties of Martian hematite spherules and explain why a cosmic spherule formation mechanism provides a possible solution to the puzzling observations on Mars

    Remote Raman Spectroscopy of Minerals at Elevated Temperature Relevant to Venus Exploration

    Get PDF
    We have used a remote time-resolved telescopic Raman system equipped with 532 nm pulsed laser excitation and a gated intensified CCD (ICCD) detector for measuring Raman spectra of a number of minerals at high temperature to 970 K. Remote Raman measurements were made with samples at 9-meter in side a high-temperature furnace by gating the ICCD detector with 2 micro-sec gate to minimize interference from blackbody emission from mineral surfaces at high temperature as well as interference from ambient light. A comparison of Raman spectra of gypsum (CaSO4.2H2O), dolomite (CaMg(CO3)2), and olivine (Mg2Fe2-xSiO4), as a function of temperature shows that the Raman lines remains sharp and well defined even in the high-temperature spectra. In the case of gypsum, Raman spectral fingerprints of CaSO4.H2O at 518 K were observed due to dehydration of gypsum. In the case of dolomite, partial mineral dissociation was observed at 973 K at ambient pressure indicating that some of the dolomite might survive on Venus surface that is at approximately 750 K and 92 atmospheric pressure. Time-resolved Raman spectra of low clino-enstatite (MgSiO3) measured at 75 mm from the sample in side the high-temperature furnace also show that the Raman lines remains sharp and well defined in the high temperature spectra. These high-temperature remote Raman spectra of minerals show that time-resolved Raman spectroscopy can be used as a potential tool for exploring Venus surface mineralogy at shorter (75 mm) and long (9 m) distances from the samples both during daytime and nighttime. The remote Raman system could also be used for measuring profiles of molecular species in the dense Venus atmosphere during descent as well as on the surface

    Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    Get PDF
    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence

    Evaluation of susceptibility testing methods for polymyxin

    Get PDF
    SummaryBackgroundThe widespread resistance in Gram-negative bacteria has necessitated evaluation of the use of older antimicrobials such as polymyxins. In the present study we evaluated the different susceptibility testing methods for polymyxins B and E against Gram-negative bacteria using the new Clinical and Laboratory Standards Institute (CLSI) guidelines.MethodsThe susceptibility of 281 multidrug-resistant (MDR) Gram-negative bacteria (GNB) to polymyxin B was evaluated, comparing broth microdilution (BMD; reference method), agar dilution, E-test, and disk diffusion. Disk diffusion testing of polymyxin B was also performed against 723 MDR GNB.ResultsTwenty-four of 281 (8.5%) isolates were found to be resistant to polymyxin B by the reference BMD method. The rates of very major errors for agar dilution and E-test (for polymyxin B) were 0.7% and 1%, respectively, and those for disk diffusion (for polymyxin B and polymyxin E) were 1% and 0.7%, respectively. For the 257 isolates found sensitive by reference BMD, the rates of major errors by agar dilution and E-test (for polymyxin B) were 2.4% and 0%, respectively, and those for disk diffusion (polymyxin B and polymyxin E) were 0% and 0.7%, respectively. Twenty-six (3.6%) of the 723 Gram-negative isolates were resistant to polymyxin B by disk diffusion.ConclusionThe E-test and agar dilution methods showed good concordance with BMD. The disk diffusion method can be useful for initial screening in diagnostic laboratories

    Standoff Ultra-Compact Micro-Raman Sensor for Planetary Surface Explorations

    Get PDF
    We report the development of an innovative standoff ultracompact micro-Raman instrument that would solve some of the limitations of traditional micro-Raman systems to provide a superior instrument for future NASA missions. This active remote sensor system, based on a 532 nm laser and a miniature spectrometer, is capable of inspection and identification of minerals, organics, and biogenic materials within several centimeters (220 cm) at a high 10 m resolution. The sensor system is based on inelastic (Raman) light scattering and laser-induced fluorescence. We report on micro-Raman spectroscopy development and demonstration of the standoff Raman measurements by acquiring Raman spectra in daylight at a 10 cm target distance with a small line-shaped laser spot size of 17.3 m (width) by 5 mm (height)

    Design and Build a Compact Raman Sensor for Identification of Chemical Composition

    Get PDF
    A compact remote Raman sensor system was developed at NASA Langley Research Center. This sensor is an improvement over the previously reported system, which consisted of a 532 nm pulsed laser, a 4-inch telescope, a spectrograph, and an intensified charge-coupled devices (CCD) camera. One of the attractive features of the previous system was its portability, thereby making it suitable for applications such as planetary surface explorations, homeland security and defense applications where a compact portable instrument is important. The new system was made more compact by replacing bulky components with smaller and lighter components. The new compact system uses a smaller spectrograph measuring 9 x 4 x 4 in. and a smaller intensified CCD camera measuring 5 in. long and 2 in. in diameter. The previous system was used to obtain the Raman spectra of several materials that are important to defense and security applications. Furthermore, the new compact Raman sensor system is used to obtain the Raman spectra of a diverse set of materials to demonstrate the sensor system's potential use in the identification of unknown materials

    Remote Raman Sensor System for Testing of Rocks and Minerals

    Get PDF
    Recent and future explorations of Mars and lunar surfaces through rovers and landers have spawned great interest in developing an instrument that can perform in-situ analysis of minerals on planetary surfaces. Several research groups have anticipated that for such analysis, Raman spectroscopy is the best suited technique because it can unambiguously provide the composition and structure of a material. A remote pulsed Raman spectroscopy system for analyzing minerals was demonstrated at NASA Langley Research Center in collaboration with the University of Hawaii. This system utilizes a 532 nm pulsed laser as an excitation wavelength, and a telescope with a 4-inch aperture for collecting backscattered radiation. A spectrograph equipped with a super notch filter for attenuating Rayleigh scattering is used to analyze the scattered signal. To form the Raman spectrum, the spectrograph utilizes a holographic transmission grating that simultaneously disperses two spectral tracks on the detector for increased spectral range. The spectrum is recorded on an intensified charge-coupled device (ICCD) camera system, which provides high gain to allow detection of inherently weak Stokes lines. To evaluate the performance of the system, Raman standards such as calcite and naphthalene are analyzed. Several sets of rock and gemstone samples obtained from Ward s Natural Science are tested using the Raman spectroscopy system. In addition, Raman spectra of combustible substances such acetone and isopropanol are also obtained. Results obtained from those samples and combustible substances are presented

    Remote Pulsed Laser Raman Spectroscopy System for Detecting Qater, Ice, and Hydrous Minerals

    Get PDF
    For exploration of planetary surfaces, detection of water and ice is of great interest in supporting existence of life on other planets. Therefore, a remote Raman spectroscopy system was demonstrated at NASA Langley Research Center in collaboration with University of Hawaii for detecting ice-water and hydrous minerals on planetary surfaces. In this study, a 532 nm pulsed laser is utilized as an excitation source to allow detection in high background radiation conditions. The Raman scattered signal is collected by a 4-inch telescope positioned in front of a spectrograph. The Raman spectrum is analyzed using a spectrograph equipped with a holographic super notch filter to eliminate Rayleigh scattering, and a holographic transmission grating that simultaneously disperses two spectral tracks onto the detector for higher spectral range. To view the spectrum, the spectrograph is coupled to an intensified charge-coupled device (ICCD), which allows detection of very weak Stokes line. The ICCD is operated in gated mode to further suppress effects from background radiation and long-lived fluorescence. The sample is placed at 5.6 m from the telescope, and the laser is mounted on the telescope in a coaxial geometry to achieve maximum performance. The system was calibrated using the spectral lines of a Neon lamp source. To evaluate the system, Raman standard samples such as calcite, naphthalene, acetone, and isopropyl alcohol were analyzed. The Raman evaluation technique was used to analyze water, ice and other hydrous minerals and results from these species are presented

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds
    corecore